数学与统计学院"21世纪学科前沿"系列学术报告预告
Lower Bounds for the First Eigenvalue of the Vibrating Clamped Plate under Compression
报告题目: Lower Bounds for the First Eigenvalue of the Vibrating Clamped Plate under Compression
报告时间: 2015年 8月19日(周三)上午 10:00-11:00
报告地点: 中关村校区中心教学楼843(或844)教室
Abstract: We give a sharp lower bound to the fundamental frequency of a clamped vibrating plate under compress in the context of plates of different shapes of fixed area. Mathematically, the problem is that of bounding the first eigenvalue of a certain 4th-order partial differential operator with leading term the bi-Laplacian from below by a positive constant over the square of the domain's area. We give a Rayleigh-Faber-Krahn-type result for this problem. (This is joint work with R. Benguria and R. Mahadevan.)
报告人简介: Professor Mark S. Ashbaugh 在Laplace的特征值及等周不等式方面做出了杰出的工作, 曾解决了著名的PPW猜想、二维及三维的Rayleigh猜想等。在《Annals of Mathematics》、《Bulletin of American mathematical Society》、《Duke Math. J.》、《Advances in Mathematics》、《Comm. Math. Phys.》等国际一流杂志上发表数十篇论文。